日本正面临高张力螺栓短缺问题

目前,日本建筑业面临一个难题,就是用来紧固建筑钢架高张力螺栓数量短缺。年东京奥运相关建设以及都市开发正在进行的同时,作为高张力螺栓材料的特殊钢线材短缺,其生产赶不上需求,价格在半年内上涨了一成。日本业界忧心螺栓数量的不足可能会把增长的建设需求给浇熄了。

日本为什么高张力螺栓的数量会不够?

背后的原因可能是供给者的数量原本就有限。这些螺栓的主要制造商是新日铁住金Bolten公司(NIPPONSTEELSUMIKINBoltenCorporation)与大阪的NIPPONFastener公司等等日本国内厂商。

年经济危机造成了需求的降低,使得日本国内的生产能力缩小了。一家钢铁贸易商表示:“螺栓制造商渐渐减少采购做为高张力螺栓原料的特殊钢线材了。”

高张力螺栓的采购价格为每吨28万日币,比年春天上涨了3万日币。价格虽涨了,却很难更换采购对象。某家高张力螺栓经销商说:“我们很可能在接近年尾才从制造商那里进新的一批货,目前光是要供应给常客就很吃紧了。” 

建筑用螺栓的数量不足的话工程就无法进行,螺栓这个小小的零部件正引起日本建筑业沉重的担忧。

那么,日本目前的高强度螺栓技术发展到哪个阶段呢?我们可以借鉴一下。

日本高强度螺栓技术研究的新进展

高强度螺栓技术(以下简称高栓)是钢结构桥梁连接中常用的连接方式之一,近年来在桥梁结构中得到广泛应用。美国、日本在这个领域的研究处于世界领先地位。

高栓的连接,按照其传力方式,可分为摩擦型高栓连接、承压型高栓连接、扭剪型高栓连接等几种。

高栓到底是何时开始使用的尚不明确,但有资料记载,美国是世界上最早开始研究高栓的国家,始于20世纪40年代。日本从20世纪50年代开始使用高栓,首次使用于年架设的某铁路桥,以此为契机,随后在铁路桥上大量使用高栓。年还制定了高栓技术标准,即日本工业规格JISB。随后,日本公路协会又出版发行了《公路钢桥高强度螺栓摩擦连接设计指南》。

我国铁路钢桥自20世纪60年代初期开始用高栓连接代替铆钉连接,至今已有50余年的历史。现在,铁路钢桥工地连接主要采用高栓连接和焊接连接两种连接技术。公路桥的钢桁梁、桁架拱桥的工地连接也有不少采用高栓连接。

日本如何对待高栓病害

钢桥的代表性损伤之一,是高栓的松动、掉落。螺栓松动、掉落的原因之一是高栓的延迟破坏(或称为延迟断裂)。延迟破坏是高强度钢构件在高应力和环境影响下,由于韧性逐渐降低,经过一定时间后发生的脆性破坏。

日本钢桥也经常发生高栓松动、掉落的现象。福岛县三岛大桥于年建成(图1)。在年发生过高栓掉落现象,桥梁管理人员以高栓损伤为重点进行检查,并把已损伤的高栓进行了更换。但是,高栓损伤仍继续发生。

图1三岛大桥全景

按照日本在年颁布的对桥梁、隧道每5年进行一次定期检查的部令,桥梁管理人员用检测车对该桥的高栓进行了检查,而且是进行了非常详细的检查。检查后结合以往的检查资料、设计资料进行综合分析,还做了高栓自身的强度试验、成分调查分析等。

分析后认为:对桥梁整体而言,并没有发现致命的损伤,所看到的高栓损伤为“延迟破坏”。并且认为今后仍存在高栓继续损伤、掉落的可能性。为确保通行车辆的安全性,及时地对全部松动与掉落的高栓进行了更换与补修,如图2。

图2三岛大桥高栓损伤情况

对高栓松动、掉落现象检查的目的是为了进行安全性评估,评估时主要着眼于每组高栓中的松动、掉落数量。如果每组高栓中松动、掉落根数不满5%,可认为对承载能力的影响较小;如果超过5%,就需要慎重对待。

图3所示是对某桥进行检查的结果,每组高栓的掉落根数没有超过5%。但是,由于是使用F11T超强高栓,恐怕今后仍会发生高栓掉落现象。因此,按健全性诊断标准评定为Ⅱ级(结构物的机能不产生故障,但从预防角度看仍希望采取措施)。

图3高栓掉落实例

高栓技术的发展方向

1.高栓连接

超高强度螺栓。现在高栓摩擦连接用的螺栓的强度等级为MPa。有F10T、S10T两种类型(实际上日本还有F11T型)。建筑领域开发了一种将10T级乘以1.4倍的14T级的高栓,并且在许多建筑工程中采用。由于S14T级螺栓的缺点是易发生延迟破坏,所以正在开发不易发生延迟破坏的材料、缓解螺纹根部应力集中的新型螺旋形状。

钢桥领域,目前还没有采用S14T,但正在进行S14T级高栓采用方面的技术标准的调查与研究。在物质材料研究机构(NIMS),正在开发18T级的材料、新型螺旋形状,以尽量回避螺纹根部的延迟破坏。为了验证延迟破坏还在进行室外暴露试验,试验时限定了使用环境、要求达到检验需要的。

高栓的大直径化,为实现高轴力的有效方法之一。在公路桥规范中规定了直径20、22、24三种规格的高栓。在建筑领域如输送电铁塔中已经采用了直径超过32的高栓。

通过对大直径高栓的连接构造进行试算后认为,根据螺栓布置有关的最小中心间距的规定,必须加大螺栓布置的间距。由于开孔使断面有削弱的部分,可考虑通过优化螺栓布置来弥补。鉴于大跨度桥梁中梁、索塔构件厚度的不断加大,M30高栓直径仍显小,急需M32或M36的高栓。

2.高栓轴力控制办法

在钢桥领域,高栓轴力控制,一般采用扭矩法控制轴力,这是因为规定高栓在弹性范围内工作。但是,在建筑领域采用的是螺帽旋转法控制轴力,是在超过弹性的塑性阶段拧紧螺帽。在本州四国联络桥工程中,采用屈服强度法控制轴力,认为在弹性响应限界的屈服强度范围内,提高轴力是可行的。基于这种考虑,日本钢结构协会的某技术委员会正在组织开发新型的屈服强度法扳手,并进行其适用性研究。

3.高栓摩擦连接结合面滑移系数的设定

最早规定把高栓摩擦连接接头作为钢桥的设计标准,以红色生锈面为基本时代,从防锈的观点涂敷无机富锌漆,这时滑移系数为0.4。到了年,在进行公路桥梁规范修订时,规定根据结合面条件的不同来设定滑移系数,当采用无机富锌漆时,只要满足一定的条件,滑移系数可取为0.45。对于更换或更新之类的修补、补强,在构件结合面两侧进行不同的结合面处理,或者对不同结合面处理时,根据实际情况设定适当的滑移系数。即根据结合面处理及其组合,至于一律取0.4还是超过0.4,要根据实际情况决定。

现在,对滑移系数的设定没有评价方法,一般根据需要进行标准滑移试验,再根据试验结果确定设计滑移系数。但是,当所得到的试验结果与设计标准中所表示的滑移系数相差较大时,滑移系数怎样取值没有明确。因此,在(国研)土木技术研究所和大阪市立大学,以统一标准滑移试验为目的,根据试验结果就滑移系数的设定方法共同进行研究,以确定合理的滑移系数。

4.结合面滑移系数的提高

提高高栓摩擦连接结合面的高滑移系数,可通过各种各样的手段获得。例如:对结合面进行机械切削形成纹路以此来改善滑移系数。年,在修改公路桥规范时,规定当涂敷无机富锌漆时,抗滑移系数超过0.45;当确保一定的涂膜厚度时,抗滑移系数为0.40~0.45。如采用防腐性能优越的喷合金材料为结合面时,还可以获得更高的抗滑移系数。考虑实际的架设工程,对连接板喷合金材料、母材采用无机富锌漆涂敷,这样两种不同材料进行结合面处理时,可以获得更高的抗滑移系数,当满足一定的条件时,滑移系数可达到0.54。在建筑邻域,结合面采用喷铝时,滑移系数超过0.8。

5.高栓装置的高耐久性

高栓结合的另一个需研究的重大课题是高栓的头部、螺帽、螺纹处的腐蚀。高栓结合部的腐蚀,如图4所示,主要是由于螺纹部的涂膜厚度不足,导致螺帽部、螺纹部、大六角头螺栓头部易腐蚀。

解决这个问题的方法之一,是把连接部做成平滑状。从打入式承压螺栓受到启发,研究采用埋头高栓的摩擦连接接头,埋头高栓是为高栓摩擦连接接头开发的。埋头的开角比打入式高栓的开角大,这是由螺栓轴力的徐变特性、埋头部的应力集中决定的。

图5是埋头高栓的例子,图6所示为采用埋头高栓的摩擦连接接头的标准滑移试验。通过采用这种螺栓,连接接头表面平滑,涂膜厚度也有保证,耐腐蚀性能也有所提高。

图4主桁拼接板腐蚀实例

图5摩擦型连接用埋头高栓

由于按埋头形加工连接板,所以,在拉力作用下,螺栓轴力的降低比常用高栓大,滑移屈服强度降低10%左右。根据这个特性,对滑移系数作适当设定,耐久性高的连接部的实现是可能的。另外,考虑实际制造误差的埋头螺栓的制造容许值的设定,稍微增大连接板侧埋头加工部的埋头螺栓的开角角度,可改善滑移系数。

借鉴国外技术,推动国内发展

高栓连接是桥梁构件(杆件)连接中常用的连接方式,在公路、铁路桥梁中被大量的采用。美国、日本学者在高栓连接方面的研究起步早于中国,做了大量深入细致的研究工作。日本规定高栓延迟破坏不允许超过5%、健全性诊断评定标准、开发大直径高栓等,对我国在这方面的应用与研究具有重要的参考意义。

我国在学习引进美国、日本的高栓技术的同时,也在不断的提高、发展。早期主要靠引进日本的技术与产品,如曾经进口日本M27高栓、学习日本做屈服强度法控制轴力、进口日本扳手等。后来、我们自力更生,已成功研发出第一代、二代、三代高栓扳手产品,其扭矩精度为5%。目前,第四代产品的样机已试制成功。本译文收集了日本近期在高栓方面的研究工作,旨在介绍国外在这个领域的研究动态,以推动国内在高栓方面的技术发展。

图6埋头高栓摩擦连接的标准滑移试验

高强度螺栓,您了解多少?

高强度螺栓在生产上全称叫高强度螺栓连接副,一般不简称为高强度螺栓。

根据安装特点分为:大六角头螺栓和扭剪型螺栓。其中扭剪型只在10.9级中使用。

根据高强度螺栓的性能等级分为:8.8级和10.9级。其中8.8级仅有大六角型高强度螺栓,在标示方法上,小数点前数字表示热处理后的抗拉强度;小数点后的数字表示屈强比即屈服强度实测值与极限抗拉强度实测值之比。8.8级的意思就是螺栓杆的抗拉强度不小于MPa,屈强比为0.8;10.9级的意思就是螺栓杆的抗拉强度不小于MPa,屈强比为0.9。

结构设计中高强度螺栓直径一般有M16/M20/M22/M24/M27/M30,不过M22/M27为第二选择系列,正常情况下选用M16/M20/M24/M30为主。

高强度螺栓在抗剪设计上根据设计要求分为:高强度螺栓承压型和高强度螺栓摩擦型。

摩擦型的承载能力取决于传力摩擦面的抗滑移系数和摩擦面数量,喷砂(丸)后生赤锈的摩擦系数最高,但从实际操作来看受施工水平影响很大,很多监理单位都提出能否降低标准来确保工程质量。

承压型的承载能力取决于螺栓抗剪能力和栓杆承压能力的最小值。在只有一个连接面的情况下,M16摩擦型抗剪承载力为21.6~45.0kN,而M16承压型抗剪承载力为39.2~48.6kN,性能要优于摩擦型。

在安装上,承压型工艺要简单一些,连接面仅需清除油污及浮锈。沿轴杆方向抗拉承载力,在钢结构规范中写的很有意思,摩擦型设计值等于0.8倍预拉力,承压型设计值等于螺杆有效面积乘以材料抗拉强度设计值,看起来似乎有很大区别,实际上两个值基本一致。

在同时承受剪力和杆轴方向拉力时,摩擦型要求是螺栓承受的剪力与受剪承载力之比加上螺杆承受轴力与受拉承载力应力比之和小于1.0,承压型要求是螺栓承受的剪力与受剪承载力之比的平方加上螺杆承受轴力与受拉承载力比的平方之和小于1.0,也就是说在同种荷载组合情况下,相同直径的承压型高强度螺栓在设计上的安全储备要高于摩擦型高强度螺栓的。

考虑到在强震反复作用下,连接摩擦面可能会失效,这时候的抗剪承载力还是要取决于螺栓抗剪能力和板件承压能力,因此抗震规范规定了高强度螺栓极限受剪的承载力计算公式。

尽管承压型在设计数值上占有优势,但由于其属于剪压破坏型式,螺栓孔为类似普通螺栓的孔隙型螺栓孔,在承受荷载作用时的变形远大于摩擦型,所以高强度螺栓承压型主要用于非抗震构件连接、非承受动荷载构件连接、非反复作用构件连接。

这两种型式的正常使用极限状态也是有区别的:

摩擦型连接是指在荷载基本组合作用下连接摩擦面发生相对滑移;

承压型连接是指在荷载标准组合作用下连接件之间发生相对滑移;

常用螺栓分为普通螺栓和高强度螺栓两种,普通螺栓又称为机械螺栓(


转载请注明:http://www.aierlanlan.com/grrz/272.html